
1

TOPIC: SPREADSHEET APPLICATION

Definition of a Spreadsheet Application

A spreadsheet application is a software program used to store, organize, analyze, and manipulate data in a

tabular format. It consists of rows and columns that form cells where users can input text, numbers, and

formulas. Spreadsheet applications are commonly used for tasks such as financial analysis, budgeting, data

visualization, and record-keeping.

Some common examples of spreadsheet applications include:

⮚ Microsoft Excel

⮚ Google Sheets

⮚ Lotus 1-2-3

⮚ LibreOffice Calc

⮚ Apple Numbers

⮚ Zoho Sheet

Terminologies

⮚ Cell(s): The intersection of row and column forms a cell. It is the smallest unit in a spreadsheet

where data is entered, identified by a column letter and row number (e.g., A1, B5).

⮚ Rows: Horizontal arrangements of cells in a spreadsheet, labelled with numbers (1, 2, 3…). Rows

begin with 1 and end at 1048576.

⮚ Columns: Vertical arrangements of cells, labelled with letters (A, B, C…). Columns begin with A up

to XFD.

⮚ Worksheet: This is a single sheet within a spreadsheet application containing rows and columns for
data entry and analysis.

⮚ Workbook: This is a collection of worksheets within a single spreadsheet file.

⮚ Active Cell: The currently selected cell in a worksheet, usually highlighted with a border.

⮚ Cell Address (Reference): The unique identifier of a cell, based on its column letter and row

number (e.g., A1, C5).

⮚ Formula: This is a mathematical expression entered in a cell to perform calculations or operations

(e.g., = A1 + B2 + B3).

⮚ Function: A predefined formula in a spreadsheet that performs calculations (e.g., SUM(),

AVERAGE()).

⮚ Arguments: refers to the values or references passed into a function to perform a specific calculation

or operation. Arguments are enclosed in parentheses and can be numbers, text, cell references,

ranges, or other expressions. Text must be in double quotes (“ ”) when used as an argument.

⮚ Name Box: The area that displays the address of the active cell.

⮚ Sheet Tab: The tab at the bottom of the workbook that allows switching between different worksheets.

⮚ Quick Access Toolbar: A customizable toolbar that provides quick access to frequently used

commands like Save, Undo, and Redo.

⮚ Ribbon (Menu Bar): A collection of tabs and command groups that provide access to various

spreadsheet tools and functions.

⮚ Scroll Bars: Used to navigate horizontally or vertically through a large worksheet.
⮚ Row and Column Headers: Numbered rows (1, 2, 3…) and lettered columns (A, B, C…) that help

identify cell locations.

2

FUNCTIONS AND FORMULAS

Function
A function is a predefined formula in a spreadsheet application that performs calculations or operations on

data. Functions take one or more inputs (called arguments) and return a result.

Example:

● =SUM(A1:A5) → Adds the values in cells A1 to A5.
● =AVERAGE(B1:B10) → Calculates the average of the values in B1 to B10.

Formula

A formula is an equation manually created by the user in a spreadsheet to perform calculations. A formula
can use *cell references, numbers, operators (e.g., +, -, * , /), and functions. Every formula starts with an

equal sign (=).

Example:

● =A1 + A2 + A3 → Adds values in A1, A2, and A3.
● =B1 * 10 → Multiplies the value in B1 by 10.
● =(C1 + C2) / 2 → Finds the average of C1 and C2 without using a function.

1. Date and Time Functions
These are functions that help retrieve and manipulate date and time values.

● TODAY() – Returns the current date.
● DAY(A1) – Extracts the day from a given date in cell A1.
● MONTH(A1) – Extracts the month from a given date.
● YEAR(A1) – Extracts the year from a given date.

Example:

If A1 contains "2024-02-11",

● =DAY(A1) returns 11
● =MONTH(A1) returns 2
● =YEAR(A1) returns 2024

● =TODAY() returns 27-02-2025

● =NOW() returns 10:22

2. Mathematical Functions
Mathematical functions used for numerical calculations.

● SUM() – Adds values in specified cells.

● PRODUCT() – Multiplies values in specified cells.

● SUMIF(range, condition, [sum_range]) – Adds numbers in a range that meet a condition.

● ROUND(value, decimals) – Rounds a number to a specified number of decimal places.
Example:

3

● =SUMIF(A1:A10, ">50") – Adds all numbers greater than 50 in the range A1:A10.
● =ROUND(12.5678, 2) – Returns 12.57.

3. Statistical Functions
Used for counting and analyzing numerical and non-numerical data.

● COUNT(range) – Counts numeric values in a range.

● COUNTA(range) – Counts all non-empty cells (both numbers and text).

● COUNTIF(range, condition) – Counts cells that meet a condition.

Example:

● =COUNT(A1:A10) – Counts only cells that contain numeric values.
● =COUNTA(A1:A10) – Stands for COUNT ALL. It counts all non-empty cells.
● =COUNTIF(A1:A10, ">50") – Counts numbers greater than 50.

4. Text Functions
These are functions used to manipulate text strings. Text functions include the following;

● PROPER(text) – Capitalizes the first letter of each word.
● UPPER(text) – Converts text to uppercase.
● LOWER(text) – Converts text to lowercase.
● CONCATENATE(text1, text2, ...) – Joins multiple text strings together.

● RIGHT(text, [num_chars]): Returns the specified number of characters from the end of a string.

● Example: RIGHT("Hello", 2) returns "lo".

● LEFT(text, [num_chars]): Returns the specified number of characters from the start of a string.

● Example: LEFT("Hello", 2) returns "He".

● MID(text, start_num, num_chars): Returns the specified number of characters from the middle of a

string, starting at a position you define.

● Example: MID("Hello", 2, 3) returns "ell".

Example:

● =PROPER("excel functions") → "Excel Functions"
● =UPPER("hello") → "HELLO"
● =LOWER("WORLD") → "world"
● =CONCATENATE("Hello", " ", "World") → "Hello World"

5. Lookup and Reference Functions

These are functions used to retrieve values from a dataset. They include the following;

4

● LOOKUP(lookup_value, lookup_vector, result_vector) – Finds a value in a range.
● VLOOKUP(lookup_value, table_array, col_index, [range_lookup]) – Searches for a value in a

table and returns a corresponding value from a specified column.

Example:

Student Score Grade

John 85 B+

Alice 80 B

Harun 88 B+

Ahmed 74 C+

Salia 92 A

To find the Score of John using the LOOKUP function,

=LOOKUP(“John”, A2:A6, B2:B6). This returns 85

Using the VLOOKUP to find the Grade of Salia will be;

=VLOOKUP("John", A2:B10, 2, FALSE) → Returns John's score from column B .

6. Logical Functions
These are functions used for decision-making based on conditions.

● IF(condition, value_if_true, value_if_false) – Checks a condition and returns different values based on the

result.
● AND(condition1, condition2, ...) – Returns TRUE if all conditions are met.
● OR(condition1, condition2, ...) – Returns TRUE if at least one condition is met.
● IFERROR(expression, value_if_error) – Returns an alternate value if an error occurs.

● =IF(AND(A1>=50, B1>=50), "Pass", "Fail")

● =IF(OR(A1>=50, B1>=50), "Pass", "Fail")

Example:

● =IF(A1>50, "Pass", "Fail") – Returns "Pass" if A1 is greater than 50, otherwise "Fail".
● =IFERROR(1/0, "Error occurred") → Returns "Error occurred" instead of showing a division error.

7. Database Functions
Used to perform calculations on database-like structures in spreadsheets.

● DSUM(database, field, criteria) – Adds values that match specified conditions.

5

● DMIN(database, field, criteria) – Finds the minimum value that meets criteria.
● DMAX(database, field, criteria) – Finds the maximum value that meets criteria.
● DCOUNT(database, field, criteria) – Counts numeric values that meet criteria.

Example:

If you have a dataset with "Sales" in column B, and you want to sum only the sales that are greater than

1000, you can use:

● =DSUM(A1:B10, "Sales", D1:D2) (where D1:D2 contains the filtering criteria).

Data Types in a Spreadsheet and Their Uses

⮚ Number: Used for performing calculations, such as quantities, scores, or statistical values (e.g., 100,

45.6).

⮚ Text (Label): Non-numeric data used for names, descriptions, or headings (e.g., "John Doe", "Product

Name").

⮚ Date/Time: Represents calendar dates and time values, useful for scheduling and tracking (e.g.,
12/02/2024, 10:30 AM).

⮚ Currency: Displays monetary values with currency symbols, used for financial calculations (e.g.,

$500.00, €75.50).

⮚ Percentage: Expresses values as percentages, commonly used in statistical analysis (e.g., 25%, 0.75

formatted as 75%).

⮚ Boolean (Logical): Represents TRUE or FALSE values, used in decision-making and logical

conditions.
⮚ Custom Data Types: Includes user-defined formats like phone numbers, product codes, or

specialized numerical formats.

Editing Data

● To modify data in a cell, double-click the cell or select it and edit in the Formula Bar.
● Press Enter to save changes or Esc to cancel.
● Use Backspace to delete characters one by one or Delete to remove entire content.
● Copy (Ctrl + C) and Paste (Ctrl + V) allow moving or duplicating data.

Conditional Formatting

● Allows automatic formatting of cells based on specified conditions.

● Access via Home > Conditional Formatting in Excel.
● Examples:

o Highlighting cells above a certain value.

o Formatting duplicate values.

o Applying color scales or data bars based on value ranges.

Custom Number Format

● Enables formatting numbers, dates, and text according to custom rules.

● Access via Format Cells > Number > Custom in Excel.
● Examples:

o #,### → Adds thousand separators (e.g., 1,000).
o "Grade: "0 → Displays numbers as "Grade: 90".

o dd-mmm-yyyy → Formats date as "12-Feb-2025".

6

Importing Text Files

● Used to bring external data from .txt or .csv files into a spreadsheet.
● Access via Data > Get External Data > From Text/CSV in Excel.
● Import Wizard allows selecting delimiters (comma, tab, space) to properly structure data.

Paste Special Option

● Provides advanced pasting options beyond simple copy-paste.

● Access via Right-click > Paste Special or Ctrl + Alt + V.
● Options include:

o Values: Pastes only the raw data without formulas.
o Formats: Copies only the formatting.
o Transpose: Swaps rows and columns.
o Multiply/Divide: Applies mathematical operations during pasting.

Displaying Data
Effectively displaying data in a spreadsheet makes it easier to read, analyze, and interpret. Some common

ways to enhance data presentation include:

● Adjusting Column Width and Row Height: Ensures that data is fully visible by resizing columns

and rows to fit their content.
● Text Wrapping: Keeps all text visible within a cell without expanding the column width by

wrapping long text onto multiple lines.
● Merging Cells: Combines multiple cells into one, useful for creating headers and formatting

structured tables.
● Sorting and Filtering:

o Sorting arranges data in ascending or descending order based on selected criteria (e.g.,

alphabetical order or numerical order).
o Filtering allows users to display only specific data that meets certain conditions.

● Conditional Formatting: Highlights key information by changing cell colors, font styles, or icons

based on conditions (e.g., marking negative values in red or highlighting the top 10 values).

Freeze Row, Column, and Title
Freezing specific parts of a spreadsheet ensures that important data (such as headers or labels) remains

visible while scrolling.

● Freeze Top Row: Keeps the first row fixed, which is useful for keeping column headers visible

when working with large datasets.
o To freeze the top row: Go to View > Freeze Panes > Freeze Top Row.

● Freeze First Column: Keeps the first column in place, useful when working with large spreadsheets

that require constant reference to the first column.
o To freeze the first column: Go to View > Freeze Panes > Freeze First Column.

● Freeze Multiple Rows or Columns:

o Select a cell below the row and to the right of the column you want to freeze.

o Go to View > Freeze Panes > Freeze Panes to lock everything above and to the left of the

selected cell.

7

What-If Tables (Data Tables)
What-If Analysis is used to explore different outcomes based on changes in input values. It helps in

decision-making and forecasting.

Types of What-If Tables:

1. One-Variable Data Table:

o Used to see how changing a single input affects an outcome.

o Example: Changing the interest rate in a loan calculation to see its effect on monthly

payments.

2. Two-Variable Data Table:

o Used to analyze the impact of two different inputs on a result.

o Example: Examining how changes in both loan amount and interest rate affect monthly

payments.

To create a data table, go to Data > What-If Analysis > Data Table, then input row and column variables.

Data Protection
Data Protection is the act of limiting unauthorized or accidental modification of data for consistency.

Protecting data ensures that important information is not accidentally changed or deleted.

Ways to Protect Data in a Spreadsheet:

● Protecting a Sheet: Restricts editing or modifications to the entire sheet or specific areas.
o Go to Review > Protect Sheet, set a password, and choose the actions users can perform.

● Protecting a Workbook: Prevents users from adding, deleting, or renaming sheets within the

workbook.
o Go to Review > Protect Workbook and set a password.

● Locking Specific Cells: Prevents modifications to specific cells while allowing other areas to remain

editable.
o Select the cells, right-click, choose Format Cells > Protection, check Locked, then protect

the sheet.

Adding and Removing Passwords

Adding a Password to a File:

● To prevent unauthorized access:

1. Open the file.

2. Go to File > Info > Protect Workbook > Encrypt with Password.
3. Enter and confirm a password.

4. Click OK and save the file.

● To restrict editing but allow opening:

1. Go to File > Save As > Tools > General Options.
2. Enter a password for modification.

8

3. Save the file.

Removing a Password from a File:

● Open the file and enter the password.

● Go to File > Info > Protect Workbook > Encrypt with Password.
● Delete the password and save the file.

Password protection is useful for securing sensitive data but should be used carefully to avoid losing access

to important files.

Protecting Worksheets
By default, when a worksheet is protected, all cells are locked. If you want to allow certain cells to remain

editable:

1. Select the cells you want to keep editable.

2. Right-click and choose Format Cells.
3. Go to the Protection tab.
4. Uncheck Locked, then click OK.

How to Protect a Worksheet

1. Click on the Review tab in the Excel ribbon.
2. Select Protect Sheet.
3. A dialog box will appear. Choose the actions users can perform (e.g., selecting cells, inserting rows,

deleting columns, etc.).

4. Enter a password (optional) to prevent unauthorized changes.

5. Click OK and confirm the password.

Procedure to Unprotect a Worksheet

1. Go to the Review tab.
2. Click Unprotect Sheet.
3. Enter the password (if required) and press OK.

What is Conditional Formatting?
Conditional Formatting is a feature in spreadsheet applications (such as Microsoft Excel or Google Sheets)

that allows you to apply different formatting styles (e.g., colors, bold text, font changes) to cells based on

specific conditions. This helps in visually identifying important data trends, errors, or key values.

Steps to Apply Conditional Formatting in Excel

1. Select the range of cells you want to apply the formatting to.
2. Go to the Home tab and click on Conditional Formatting in the toolbar.
3. Choose the type of rule you want to apply, such as:

o Highlight Cells Rules (e.g., values greater than a specific number).
o Top/Bottom Rules (e.g., top 10 highest values).
o Data Bars (graphical bars inside cells).
o Color Scales (gradient colors based on value ranges).
o Icon Sets (symbols like arrows or checkmarks).

9

4. Enter the condition (e.g., "Format cells greater than 100") and choose the formatting style (e.g., red

fill color).

5. Click OK to apply the formatting.

Merging and Splitting Cells, Columns, and Rows

Merging Cells
Merging cells combines multiple adjacent cells into a single larger cell, often used for titles or headers.

How to Merge Cells in Excel

1. Select the cells you want to merge.

2. Go to the Home tab.
3. Click Merge & Center (or use Merge Across or Merge Cells options).
4. The selected cells will be combined into one.

Note: When merging, only the content in the top-left cell is retained; other cell contents are deleted.

Splitting Merged Cells
If you want to undo merging and return to separate cells:

1. Select the merged cell.

2. Go to the Home tab.
3. Click Merge & Center again (this will unmerge the cells).

Merging and Splitting Columns & Rows
Unlike cells, columns and rows cannot be merged but can be adjusted in width and height for better

formatting.

Sorting and Querying for Information in Spreadsheets

Sorting Data
Sorting helps organize data in a meaningful order, making it easier to analyze and interpret. In spreadsheet

applications like Microsoft Excel or Google Sheets, you can sort data by a single column, multiple columns,

or even perform custom sorts.

Sorting Data by Multiple Columns

1. Select the range of data you want to sort (including column headers).

2. Go to the Data tab and click Sort.
3. Choose the first column to sort by and select Ascending or Descending order.
4. Click Add Level to sort by a second column.
5. Repeat for additional columns if needed.

6. Click OK to apply sorting.

Example: If sorting student records, you might first sort by Class and then by Name within each class.

10

Performing Custom Sorts

Custom sorts allow sorting based on specific conditions, such as sorting by months (January, February, etc.)

instead of alphabetically.

1. Select the data range.

2. Click Sort under the Data tab.
3. Choose a column, then select Custom List.
4. Enter the preferred order (e.g., "Low, Medium, High" or days of the week).

5. Click OK to apply.

Querying for Information
Querying helps filter and extract specific data based on defined criteria.

Creating a Single or Multiple Criteria Query

1. Select the dataset.

2. Go to Data > Filter to enable filter options.
3. Click the filter dropdown on the desired column.

4. Enter a condition (e.g., "Show only values greater than 50").

5. To apply multiple criteria, use filters on different columns.

Example: If managing sales data, you could filter products sold in January with sales above $1000.

Using Advanced Query/Filter (Advanced Filtering in Excel)

Advanced filtering allows more complex queries using AND/OR conditions.

1. Select your dataset.

2. Go to Data > Advanced Filter.
3. Choose whether to filter in place or copy results to another location.

4. Define criteria in a separate range (e.g., "Price > 500" AND "Category = Electronics").

5. Click OK to apply.

Using Graphs and Charts to Represent Data
When we use Graphs and charts, it helps us visually represent data trends and comparisons.

Steps to Create a Chart in Excel

1. Select the dataset to visualize.

2. Go to the Insert tab and choose a chart type (e.g., Bar, Line, Pie, Column).
3. Adjust chart elements such as title, labels, and colors.

4. Use the Chart Tools menu to customize further.

Common Chart Types and Their Uses

11

● Column Chart – A column chart represents data using vertical bars. Each bar's height corresponds

to a value, making it easy to compare different categories. It is useful when displaying distinct groups

or categories with numerical values.

● Line Chart – A line chart connects data points with a continuous line, showing changes over time. It

is effective for illustrating trends, patterns, and fluctuations in data across periods.

● Pie Chart – A pie chart is a circular chart divided into slices, where each slice represents a portion of

the whole. The size of each slice is proportional to the value it represents, making it ideal for

showing percentage distributions.

● Bar Chart – A bar chart is similar to a column chart but uses horizontal bars instead of vertical ones.

It is particularly useful for comparing values across categories, especially when category names are

long or there are many categories.

12

TOPIC: INTRODUCTION TO PROGRAMMING

Computer Program

This is a set of instructions that a computer can follow to perform a specific task. These instructions are

written in a programming language and can be simple, like performing a basic calculation, or complex, like
running a web browser or a video game. In its human-readable form, a program is also called source code.

This source code is then translated into a form the computer can directly execute, known as machine code.

Programming, on the other hand, is the process of creating those programs. Thus, it's the act of writing the

step-by-step instructions (code) that tell a computer what to do or how to perform a task. A professional who

does this is called a programmer.

What is a Programming Language?

A programming language is a formal, artificial language used to create computer programs. It consists of a

specific set of rules, syntax, and vocabulary that programmers use to write instructions. These instructions,

known as source code, define algorithms and data structures that a computer can interpret and execute. In
essence, a programming language serves as a crucial bridge, translating human logic and intentions into

machine-readable commands that direct a computer's behavior.

Eg.

Analogy

A programming language is like the language of a science textbook.

● Scientists (programmers) use it to write experiment procedures (programs).

● A student (computer) conducting the experiment must understand the language to follow the

instructions.

● If the textbook is in a language the student doesn’t understand, a translator (compiler or interpreter) is
needed to translate it into a language the student knows (machine code).

● Some translators (compilers) translate the entire book before the student starts the experiment, while

others (interpreters) translate step by step as the student reads.

History of Programming languages

In 1843, Ada Lovelace wrote the first algorithm for a mechanical computer, making her the world's first

programmer.

In 1945, John von Neumann introduced the von Neumann architecture, which allowed computers to store

both programs and data in memory. This breakthrough laid the foundation for modern programming. Around

the same 1945, computers used machine language (binary 0s and 1s), but Assembly Language was later

introduced to simplify coding.

In 1957, John Backus developed FORTRAN (Formula Translator) for scientific computing. FORTRAN

was considered the first high-level language. This was followed by COBOL (Common Business Oriented

Language) in 1959 by Grace Hopper for business applications. COBOL was similar to English, hence was

a High-level language.

The 1970s saw the birth of C (1972) by Dennis Ritchie, which became the foundation for modern

programming. Bjarne Stroustrup later enhanced it into C++ (1983) with object-oriented features.

With the rise of the internet in the 1990s, Python (1991) by Guido van Rossum, Java (1995) by James

Gosling, and JavaScript (1995) by Brendan Eich revolutionized software development.

13

In the 2000s, C# (2000) by Microsoft, Swift (2014) by Apple, and Kotlin (2016) emerged for modern app

development.

Today, programming continues to evolve with AI and cloud computing shaping the future.

Categories of Programming Languages

Programming languages are broadly categorized into two main types:

1. Low-level languages

2. High-level languages

Low-Level Programming Languages

Low-level programming languages are those that are closer to the machine language and interact directly

with the computer’s processor. They are efficient in terms of speed and memory usage but are more difficult

for humans to read and write compared to high-level languages. Low-level languages are primarily used in

system programming, embedded systems, etc.

Examples of Low-level language are Assembly language and Machine language.

Machine Language (First Generation Language - 1GL)
Machine language is the most basic form of programming language, consisting entirely of binary digits (0s

and 1s). Since computers can only understand binary instructions, machine language allows programs to be
executed without requiring any translation. However, writing machine code is extremely difficult for humans

because it lacks readability and is prone to errors.

For example, an instruction to add two numbers in machine language might look something like this:

11011010 10101100

Since machine language is directly understood by the computer’s CPU, it executes very quickly. However, it

is highly specific to the processor it is written for, meaning that machine code written for one type of

processor will not work on another.

Advantages of Machine Language

✔ Fast Execution – Directly understood by the CPU, making it the fastest language.

✔ No Translation Needed – Does not require a compiler or interpreter, reducing processing time.

✔ Full Hardware Control – Allows direct interaction with the computer’s hardware and memory.

✔ Efficient Memory Usage – Uses minimal system resources, making it ideal for embedded systems.

✔ Works on Any System with the Same CPU – No need for additional software to run the code.

Disadvantages of Machine Language

1. Difficult to Learn and Use – Written in binary (0s and 1s), making it hard to read, write, and debug.
2. Hardware Dependent – Code written for one type of processor does not work on another.
3. Error-Prone – Since it consists of long sequences of binary digits, even a small mistake can cause

major issues.
4. Time-Consuming – Writing programs in machine language takes a lot of time and effort.
5. Lack of Portability – Cannot be transferred easily between different computer systems.

14

Assembly Language

Assembly language is a low-level programming language that uses symbolic names (called mnemonics)

instead of binary code (0s and 1s) to represent machine instructions. It is easier to read and write than

machine language but still requires knowledge of the computer’s architecture.

Unlike machine language, which consists entirely of binary numbers, assembly language uses short, readable
codes (mnemonics) like MOV, ADD, and SUB to represent operations. However, since computers cannot

directly understand mnemonics, a special program called an assembler is used to convert assembly code

into machine code for execution.

Opcode

Opcode (Operation Code) is the part of an instruction that specifies the operation to be performed by the

CPU. It tells the computer what to do (e.g., add, move, or store data).

Example: In ADD AX, BX, the opcode is ADD (addition operation).

Operand

An operand is the data or memory location on which the opcode operates. It specifies what to process in

an instruction.

Example: In ADD AX, BX, AX and BX are operands (the values being added).

Mnemonics

Mnemonics are symbolic short words used in assembly language to represent machine instructions, making

the code more readable. They replace binary opcodes with human-friendly commands.

Example: Instead of 10110000 00000001 (binary machine code), assembly language uses MOV AL, 1, where

MOV is the mnemonic.

Instruction

Meaning

MOV

Transfers data from one location to another.

ADD

Adds two values and stores the result.

SUB

Subtracts one value from another.

STA

Stores the contents of the accumulator into memory.

LDA

Loads data from memory into the accumulator.

OUT

Sends data from the accumulator to an output device.

INP

Receives data from an input device into the accumulator.

 Jumps to a specified memory address in the program.

15

JMP

CMP

Compares two values and sets flags accordingly.

HLT

Stops program execution.

Assemblers

An assembler is a software program that translates assembly language code into machine language

(binary code) so that the computer’s processor can execute it.

How Assemblers Work

1. Takes Assembly Code – The programmer writes code using mnemonics like MOV, ADD, STA.
2. Converts to Machine Code – The assembler translates these mnemonics into binary instructions.
3. Generates Executable Code – The output is a machine-readable file that the CPU can run.

Advantages of Assembly Language

1. Faster Execution – Since it is closer to machine code, it runs much faster than high-level languages.
2. Efficient Memory Usage – Allows direct control over hardware, leading to optimized memory and

CPU usage.
3. More Readable than Machine Code – Uses mnemonics instead of binary, making it easier to write

and understand.
4. Direct Hardware Control – Provides access to system components like CPU registers and memory.
5. Useful for System Programming – Ideal for writing operating systems, embedded systems, and

device drivers.
6. Compact and Optimized Code – Produces smaller and more efficient executable files compared to

high-level languages.

Disadvantages of Assembly Language

1. Difficult to Learn and Write – Requires knowledge of hardware architecture and low-level coding.
2. Time-Consuming Development – Writing programs in assembly takes longer compared to high-

level languages.
3. Hardware Dependent – Code written for one processor may not work on another without

modification.
4. Error-Prone – Since it requires precise coding, debugging can be challenging.
5. Limited Portability – Assembly programs must be rewritten for different computer architectures.
6. Less Readable – Though better than machine code, assembly language is still harder to understand

than high-level languages.

16

Assembly

Language

Machine

Language

Uses symbolic names (mnemonics) like MOV,

ADD.

Uses binary code (0s and 1s).

More human-readable and easier to

write.

Not human-readable and difficult to

write.

Needs an assembler to convert to machine code. Directly executed by the CPU without translation.

Easier to modify and debug than machine code. Difficult to modify and

debug.

Slightly slower due to translation

Fastest execution

speed.

Example: MOV AL, 1h Example: 10110000 01100001

Data Types

This is the type of data a variable can hold that tells the compiler or interpreter how the data should be

handled and what operations can be performed on it. Data type include the following:

Integer (int): Represents whole numbers, positive or negative, without decimal points.

Eg. 14, -65, 342, etc.

Float: Represents real numbers with decimal points. Eg. 5.21, 9.013, 0.02, etc.

String: Represents sequence of characters, enclosed in quotes. Eg. “Hello World!”, “Hamza”, “Muslima”,

etc.

Character (char): Represents a single character. Eg. ‘A’, ‘5’, ‘y’, ‘n’, ‘t’, ‘f’, etc.

Boolean (bool): A value that can be one of two values. Eg. True or False.

Used in logical operations.

17

Double: Represents numbers with decimal points up to about 16 decimal places.

Variables and Constants

A variable is a named storage location used to hold a value or data during the execution of a program.

It acts as a placeholder for different types of information, such as numbers, text, or complex data structures.

Variables allow programmers to manipulate and store data.

Declaration of Variables

Before a variable is used, it must be initially declared

To declare a variable, state the data type and the name of the variable

For example, to declare a variable that is intended to hold the name of a student, the declaration could be;

• String StudName;

• String studentName;

• String stud_Name; Etc.

A variable to store the age of a student could be;

• Int age;

• Int Stud_age;

• Int studentAge;

• Etc.

NOTE: In most programming languages, declaration and assignment go together.

For example; String studentName = “kofi”;

Constants

Constants are variables that hold values that cannot be changed or modified during the execution of a

program.

Once a constant is defined and assigned a value, it remains fixed throughout the program's execution, and

any attempt to alter its value results in an error or is simply ignored.

Constants are used to represent fixed or unchanging data that is critical to the program's logic, configuration

settings, or any value that should not be accidentally or intentionally modified during the program's runtime.

18

Declaration of Constants

In declaring a constant, a keyword is used to indicate that it is a constant, not a variable,

depending on the programming language used.

For example; in JavaScript, the keyword const is used to precede the constant’s name.

Eg. const Rate = 15.3

In Java, the keyword for constant is final, followed by datatype and name of constant.

Eg. final double Pi = 3.147;

Rules for Variable Declaration

1. Variables cannot contain special characters. Eg. @, #, %, &, ?, etc. except the underscore

(_).

2. Variables must not begin with a number. Eg. 4age

3. Keywords cannot be used as variable names.

4. Limitation of number of characters in the name of the variable.

5. Repetition of variables names in the same scope is not allowed.

6. Some languages require assignment at the time of variable declaration.

NOTE: These rules are for most programming languages, not all. Languages such as Qbasic.

Exercise

1. Differentiate between variables and constants.

2. Write one example of declaration of each in Q1.

Expressions and Assignments

An expression is a combination of values, variables, and operators that resolves to a single value. It's a

fundamental building block in programming used to calculate or retrieve a value.

• Example: (5 + 3) * 2 is an expression. The operations are carried out, resulting in the single value

16.

• Another example is x > 5, which evaluates to a boolean value, either true or false.

An assignment is the process of storing a value in a variable. The assignment operator, typically =, is used

to copy the value on the right side of the operator into the variable on the left side.

• Example: x = 10 is an assignment statement. The value 10 is assigned to the variable x. Similarly,

result = (5 + 3) * 2 assigns the result of the expression on the right (16) to the variable result.

19

Operators and Precedence

Operators are special symbols that perform specific operations on one or more operands (values or

variables).

• Arithmetic Operators: Used for mathematical calculations.

o + : Addition (e.g., 5 + 3 results in 8)

o - : Subtraction (e.g., 10 - 4 results in 6)

o * : Multiplication (e.g., 2 * 6 results in 12)

o / : Division (e.g., 15 / 3 results in 5)

• Relational Operators: Used to compare two operands and produce a boolean result (true or false).

o == : Equal to (e.g., 5 == 5 is true)

o != : Not equal to (e.g., 5 != 10 is true)

o < : Less than (e.g., 3 < 7 is true)

o > : Greater than (e.g., 12 > 9 is true)

• Logical Operators: Used to combine multiple boolean expressions.

o AND: Returns true if both expressions are true.

o OR: Returns true if at least one expression is true.

o NOT: Inverts the boolean value of an expression.

Operator Precedence

Operator precedence is a rule that dictates the order in which operators in an expression are evaluated.

Operators with higher precedence are performed before those with lower precedence.

• Example: In the expression 5 + 3 * 2, multiplication (*) has higher precedence than addition (+).

Therefore, the expression is evaluated as 5 + (3 * 2), which is 5 + 6, resulting in 11. Parentheses

() can be used to override precedence, forcing an operation to be evaluated first, such as in (5 + 3)

* 2, which evaluates to 16.

Input/Output Statements

• Input: Statements that allow a program to receive data from an external source, like a user typing on

a keyboard. Common keywords include read, input, or cin.

• Output: Statements that allow a program to display data to an external destination, like a screen.

Common keywords include print, output, or cout.

20

Built-in Functions

Built-in functions are pre-written blocks of code that perform specific tasks. They save time and simplify

programming. Examples include functions for mathematical calculations (sqrt, pow), string manipulation

(len, upper), or type conversion (int, str).

Sequential and Conditional Execution

• Sequential Execution: The default flow of a program, where instructions are executed one after
another, in the order they are written.

• Conditional Execution: Allows a program to make decisions and execute different code blocks

based on whether a condition is true or false. The primary construct is the if-else statement. For

example, if (age >= 18) {...} else {...}.

Looping Constructs

Loops are used to repeat a block of code multiple times. This is essential for tasks that require repetition.

• for loop: Repeats a set number of times. Used when you know the number of iterations in advance.

• while loop: Repeats as long as a condition is true. Used when the number of iterations is unknown

and depends on the condition.

• do-while loop: Similar to a while loop, but the code block is executed at least once before the

condition is checked.

Single-Dimensional Arrays

A single-dimensional array is a data structure that stores a collection of elements of the same data type in

contiguous memory locations. It's indexed, allowing you to access any element directly using its position

(index). For example, scores = [90, 85, 78, 92] is an array of integers.

Nested Loops

A nested loop is a loop placed inside another loop. The inner loop executes all its iterations for each single

iteration of the outer loop. This is useful for tasks that involve processing multi-dimensional data structures,
like a 2D array or grid. For example, you can use nested loops to print a multiplication table or iterate

through the cells of a spreadsheet.

21

Terminologies in Programming

Boolean Expression

A Boolean expression is a statement that evaluates to either true or false. These are fundamental to

decision-making in programming. For example, x > 5 is a Boolean expression.

Class

A class is a blueprint or a template for creating objects in object-oriented programming (OOP). It defines the

properties (data) and methods (functions) that an object of that class will have.

Comment

A comment is a line of text within a program's source code that the compiler or interpreter ignores.

Programmers use comments to explain their code, making it easier for others (or themselves in the future) to

understand.

Compiler

A compiler is a program that translates source code written in a high-level programming language (like C++

or Java) into machine code that a computer's processor can execute. It checks for errors and produces an

executable file.

Debugging

Debugging is the process of finding and fixing errors or bugs in a program's code. This can involve using

special tools to step through the code and inspect the values of variables to identify where the problem lies.

Event Procedure

An event procedure (also called an event handler) is a block of code that runs in response to a specific

event, such as a user clicking a button, typing in a text box, or a timer running out.

Syntax

Syntax refers to the set of rules that define the correct structure and grammar of a programming language.

It's like the grammar rules of a spoken language.

22

Variable

A variable is a named storage location in a computer's memory that holds a value. The value of a variable

can change during the program's execution.

Compile-Time Error

A compile-time error is an error detected by the compiler before the program is executed. This category

includes syntax errors. The program will not compile until these errors are fixed.

Syntax Errors

Syntax errors are mistakes in the code's structure, violating the rules of the programming language.

Examples include forgetting a semicolon at the end of a line or misspelling a keyword. The compiler or

interpreter will catch these.

Runtime Errors

A runtime error is an error that occurs while the program is running. The program may compile correctly

but crash or produce unexpected results when it tries to perform an invalid operation, such as dividing by

zero or accessing a non-existent file.

Coding

Coding is the process of writing instructions for a computer in a programming language. It involves

translating logic and algorithms into source code.

OOP

OOP stands for Object-Oriented Programming. It's a programming paradigm based on the concept of
"objects," which can contain both data and methods. The goal is to structure programs in a way that models

real-world objects and their interactions.

Program Development Life Cycle

The program development life cycle is a systematic process for creating a new program. It ensures the final

product is efficient, reliable, and meets the user's needs. The key steps are:

23

1. Problem Definition

This is the initial stage where you clearly identify and understand the problem you want to solve with the

program. It involves defining the program's purpose, what it should accomplish, and its target audience. A

well-defined problem is the foundation of a successful program.

2. Problem Analysis

Once the problem is defined, you analyze the requirements. This step involves figuring out what data the

program will need (inputs), what calculations or processes it will perform, and what information it should

produce (outputs). You also consider any constraints or limitations.

3. Algorithm Design and Representation

An algorithm is a step-by-step procedure for solving the problem. In this stage, you design the logic of the

program. The algorithm can be represented using tools like flowcharts (diagrams that show the steps and

decisions) or pseudocode (a plain-language description of the code).

4. Actual Coding

This is the process of translating the algorithm into a specific programming language. You write the source

code, following the syntax and rules of the chosen language. This is where the program takes its concrete

form.

5. Testing and Debugging

After writing the code, you must test it thoroughly to find and fix errors. Testing involves running the

program with various inputs to ensure it produces the correct output. Debugging is the process of locating

and correcting any errors (bugs) found during testing.

6. Complete Documentation and Implementation

The final step is to create documentation that explains how the program works and how to use it. This

includes user manuals and technical details for other programmers. Once everything is documented and

tested, the program is implemented, meaning it's installed and put into use.

24

What is an Algorithm?

An algorithm is a precise, step-by-step procedure for solving a particular problem or completing a task. It's

a set of unambiguous instructions that, when followed, will reliably produce a solution. Think of an

algorithm as a recipe for a computer. Just like a recipe lists the ingredients and steps to bake a cake, an

algorithm lists the inputs and instructions for a computer to get a specific output.

Key Characteristics of an Algorithm

• Sequence of Steps: An algorithm is a series of well-defined steps. These steps must be executed in a

specific order to achieve the desired result.

• Set of Instructions: The instructions are a clear method for what needs to be done. There's no room

for interpretation; each step is explicit.

• Problem-Solving: The entire purpose of an algorithm is to solve a given problem. Whether it's

sorting a list of names or calculating a complex equation, the algorithm provides the method to do it.

For example, to find the largest number in a list, an algorithm would be:

1. Start with the first number in the list and assume it's the largest.

2. Go through the rest of the numbers one by one.

3. If you find a number that's larger than the one you currently have, replace it.

4. After checking all the numbers, the one you have is the largest.

Techniques for Representing Algorithms

Algorithms can be represented in various ways to make them easier to understand and communicate before
they're written in a specific programming language. The main techniques are pseudocode, flowcharts, and

actual code.

Pseudocode

Pseudocode is a simplified, informal language used to describe the steps of an algorithm. It's not a real

programming language, so it doesn't have a strict syntax. It combines natural language with some

programming-like keywords (like IF, THEN, ELSE, FOR, WHILE) to outline the logic of the algorithm.

Pseudocode is helpful because it's language-independent and focuses on the logic rather than the syntax.

Example:

BEGIN

DECLARE number AS INTEGER

READ number

IF number > 0 THEN

 PRINT "Positive"

ELSE

 PRINT "Not positive"

END IF

END

25

Flowcharts

A flowchart is a graphical representation of an algorithm. It uses standard symbols to illustrate the sequence

of steps and decisions. Flowcharts are great for visualizing the flow of a program and making the logic easy

to follow.

• Common Symbols:

o Oval: Represents the start or end of the program.

o Rectangle: Represents a process or action.

o Parallelogram: Represents input or output.

o Diamond: Represents a decision point (e.g., a condition like IF...THEN).

o Arrows: Show the direction of the flow.

• Each representation has its own advantages, depending on the level of clarity and detail required.

Symbol Name Meaning

Oval

Terminator (Start) Represents the Start or End of a flowchart.

Parallelogram

Input/Output Used for input (e.g., user data) and output (e.g., displaying results).

Rectangle

Process Represents a step in the process, such as calculations or assignments.

Diamond

Decision Used for decision-making (Yes/No, True/False) conditions.

Arrow

Flowline Shows the direction of the flow from one step to another.

Flowchart to Determine Whether a Number is Even or Odd

Start

Input Number

Is Number % 2

== 2

Display

“Even”

Display “Odd”

26

Actual Code

The ultimate way to represent an algorithm is by writing it in a specific programming language. This is the

final step where the logical steps of the algorithm are translated into instructions that a computer can

execute. This representation requires adhering to the strict syntax rules of the chosen language.

• Example (Python):

Python

number = int(input("Enter a number: "))

if number > 0:

 print("Positive")

else:

 print("Not positive")

Conditionals

Conditionals allow a program to make decisions and choose between different paths of execution. They

check if a specific condition is true or false and then run a particular block of code based on the result.

The most common type is the if-else statement.

Structure:

If (condition = true)

 statement block 1

Else

 statement block 2

End if

How it Works:

The program first evaluates the condition. If the condition is true, it executes the code in statement

block 1. If the condition is false, it skips to the Else part and executes the code in statement block 2.

Loops

Loops are used to repeat a block of code multiple times. They are essential when you need to perform the

same action over and over without writing the same lines of code repeatedly.

Structure:

Loop while (condition = true)

 statement block

End Loop

How it Works:

The program checks the condition at the beginning of each cycle. If the condition is true, it executes the

statement block. After the block is finished, it goes back and checks the condition again. The loop

27

continues to run as long as the condition remains true. When the condition becomes false, the loop stops,

and the program moves on to the next instruction.

28

Topic: INTRODUCTION TO DATA PROCESSING SYSTEMS

Microsoft Access

Microsoft Access is a Database Management System (DBMS) designed for small to medium-sized

projects. It's known for its user-friendly graphical interface that makes it easy to create and manage

databases without extensive programming knowledge. As part of the Microsoft 365 suite, it combines a

relational database engine with tools for creating tables, forms, reports, and queries.

Access is often used for standalone applications or for small team collaborations, but it has limitations on

file size and concurrent users, which makes it less suitable for large-scale enterprise solutions.

Examples of Other Database Softwares

Database software can be categorized into two main types:

1. Relational database

2. Non-relational database (NoSQL).

Relational Database

These systems store data in tables with predefined schemas and enforce relationships between them.

• MySQL: A popular open-source relational database widely used for web applications. It is known

for its speed and reliability.

• PostgreSQL: An advanced open-source relational database known for its stability and extensive

features.
• SQL Server: Microsoft's enterprise-level relational database, designed for large volumes of data and

complex transactions.

• Oracle Database: A powerful, commercial relational database used by large companies for its high

performance, scalability, and security.

•

Non-Relational (NoSQL) Database

These systems are more flexible and are designed to handle unstructured or semi-structured data, often at a

large scale.

• MongoDB: A popular document-oriented database that stores data in flexible, JSON-like documents.

• Cassandra: An open-source, distributed database designed to handle massive amounts of data across

many servers, ensuring high availability.

• Redis: An open-source, in-memory data store used as a database, cache, and message broker, known

for its extreme speed.

Core Terminologies

• Data: Raw facts and figures.
o Example: The number "25", the name "John Smith", and the address "123 Main St." are all

pieces of data.

29

o

• Tables: The main structures for storing data, organized into rows and columns.

o Example: A "Students" table with columns for StudentID, Name, and Major

o

• Fields: The columns in a table, representing a specific attribute.

o Example: In the "Students" table, StudentID, Name, and Major are the fields.
o

• Records (or Tuples): The rows in a table, representing a single instance of an entity.

o Example: A single row in the "Students" table containing data for one student, such as (101,

"Alice", "Computer Science").

o

• Views: A virtual table created from an SQL query, used to simplify complex data retrieval.

o Example: A view named "RecentStudents" that shows only students who enrolled in the last

year.

o

• Forms: A graphical interface for entering, editing, and viewing data.

o Example: A form with text boxes to input a new student's name and ID.
o

• Queries: A request for data from a database.

•

o Example: The SQL query SELECT Name, Major FROM Students WHERE StudentID =

101; to retrieve a student's information.

o

• Schema: The logical structure of the database.

o Example: A blueprint of a database showing the "Students", "Courses", and "Enrollment"

tables and how they are related.

• Forms: Used to enter, edit, and view data in a user-friendly interface. They can be customized to

make data entry easier and more efficient.

o Example: A data entry form for a library could have fields for a book's title, author, and

publication date. This form simplifies the process of adding new books to the database

without needing to directly interact with the table.

o

• Reports: Used to present data in a formatted, professional way for printing or viewing. They can

summarize and analyze data from your tables and queries.

o Example: A report could be generated to show a list of all books checked out in the last

month, organized by due date and formatted for printing.

o

• Auto Wizard: This is a feature that guides you step-by-step through a process, such as creating a

form or report, to simplify complex tasks.
o Example: The Form Wizard can walk you through selecting the fields you want to include in

a new form and automatically arrange them into a layout.

o

• Design View: This is a workspace that allows you to create or modify the structure of database

objects, such as tables, forms, queries, and reports. It gives you full control over the design and

layout.

30

o Example: In Design View for a table, you can manually add, remove, or change fields and

set their data types (e.g., Number, Text, Date/Time). For a form, you can drag and drop

fields, add buttons, and change the colors and fonts to create a custom layout.

Keys

• Primary Key: A field that uniquely identifies each record and cannot be empty.

o Example: StudentID in the "Students" table.

o

• Foreign Key: A field in one table that links to the primary key of another table.
o Example: In an "Enrollment" table, the StudentID field would be a foreign key referencing

the "Students" table's primary key.

o

• Candidate Key: An attribute or set of attributes that could serve as a primary key.

o Example: In a "Students" table, both StudentID and SocialSecurityNumber could be

candidate keys.

o

• Composite Key: A key made up of two or more attributes.

o Example: In a concert ticket table, a composite key might be (ConcertID, SeatNumber).

Relationships

• Relationship: A connection between tables.

o Example: A logical connection between a "Students" table and a "Courses" table.

o
• One-to-One Relationship: One record is linked to only one other record.

•

o Example: A "Users" table and a "UserProfiles" table. Each user has one profile.

• One-to-Many Relationship: One record is linked to many records in another table.

o Example: A "Departments" table and an "Employees" table. One department can have many

employees.

o

• Many-to-Many Relationship: Multiple records in one table can be linked to multiple records in

another, typically using a linking table.

o Example: A "Students" table and a "Courses" table. One student can take many courses, and

a course can have many students. This is resolved by an "Enrollment" linking table.

Integrity and Constraints

• Entity Integrity: A rule that the primary key cannot contain empty values.

o Example: The StudentID field must always have a value and cannot be empty.

o

• Referential Integrity: A rule that a foreign key value must match an existing primary key value in

the referenced table.

o Example: In an "Enrollment" table, you cannot add a record with StudentID = 999 if that ID

does not exist in the "Students" table.

o

• Data Integrity: The overall accuracy and consistency of data.

31

o Example: Ensuring all phone numbers in a "Contacts" table follow a consistent format.

Additional Terminologies

• Report: A formatted summary of data from tables.

o Example: A weekly sales report showing sales by product and region.

o

• Index: A data structure that speeds up data retrieval.

o Example: An index on the LastName field to quickly find all contacts with a last name of

"Jones".

o

• Normalization: The process of organizing data to reduce redundancy.

o Example: Breaking a single table with EmployeeName, DepartmentName, and
DepartmentManager into two separate tables: one for "Employees" and one for

"Departments".

• SQL (Structured Query Language): The standard language for managing relational databases.

o Example: UPDATE Employees SET Salary = 55000 WHERE EmployeeID = 123; to change

a specific employee's salary.

